Optical & Infrared Spectroscopy of Transiting Exoplanets

Authors

C. A. Griffith (1) and G. Tinetti (2)

Affiliations

(1) Department of Planetary Sciences, University of Arizona, Tucson, AZ, USA; (2) University College London, London, UK

Abstract

Two types of spectra can be measured from transiting extrasolar planets. The primary eclipse provides a transmission spectra of the exoplanet’s limb as the planet passes in front of the star. These data probe the gas and particle composition of the atmosphere, as well as the atmospheric scale height. The secondary eclipse measures the emission of mainly the planet’s dayside atmosphere from the planet plus star’s emission minus the emission of star alone, when it eclipses the planet. These data probe the temperature and composition structure of the exoplanet. Only in the past 3 years, have infrared transmission and emission spectroscopy revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra. Transmission spectra, while less sensitive to the atmospheric temperatures, are difficult to interpret because the composition derived depends delicately on the assumed radius at a specified pressure level. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. The physical implications of these correlations are assessed in order to determine the temperature and composition structure of extrasolar planets, and their significance with respect to the exoplanet’s chemistry and dynamics.


Attached documents

Lyot2010proc s3 talk GriffithC.pdf
PDF, 22.2 Mb