Optical & IR Spectroscopy of Transiting Exoplanets (review)

Caitlin Griffith (University of Arizona)

Stellar Effects on Planets

Magnetosphere & Ionosphere
Recent work on Titan's atmosphere indicates:
1) Haze is formed near ionosphere¹
2) Haze consists in part of amino acids²

Planetary Insolation: Temperature & Composition profiles of atmospheres Recent work on atmospheric escape indicates: 1) The Sun's strong EUV stole Mars' atmosphere.³ 2) XUV of M stars may enhance free oxygen.⁴

1: Lavvas et al. 2008, 2: Horst et al. 2010; 3: Tian et al. 2008, 3: Tian et

Two Approaches

Models
→ Data

Models **←** Data

106 Transiting Planets

Taken from Jean Schneider's site: exoplanet.eu

Some of the First Measurements of Exoplanetary Atmospheres

> Planetary Atomic Absorption & Planetary Emission

Exoplanet's Emission

HD189733b HD189733b HD189733b HD189733b HD149026b

Emission photometry: Charbonneau et al. 2005, Demming et al. 2005 (HD209458b)

Primary vs Secondary Transits:

Secondary Transit provides information on Temperature & Composition Profiles

Composition & Atmospheric scale height

Depth of the observed light curve:

$$A = \frac{\pi R_P^2}{\pi R_S^2} + \int_{R_P}^{\infty} 2\pi r (1 - T(R)) dr / \pi R_S^2$$

Integrate the column density along the tangent line:

$$\int_{-\infty}^{\infty} N(r)ds \approx N(R_c) \left(2\pi R_c H\right)^{1/2}, \text{ where } H = \frac{R_g T}{mg}$$

 $N(R_c)$ is the density at the tangent line's closest distance to the planet's center, R_c

Degeneracy of $R_{10 bar}$ & composition

Detection of Molecules in Extrasolar Planets

Molecular Composition: H₂O

l'inetti *et al.*, Nature, 2007

Molecules: CH₄, CO₂ & CO

CO & CO₂

Swain et al, *Ap J.* 2009

CH₄

Swain, Vasisht, Tinetti, Nature, 2008

All measurements are space-based

Swain et al. 2008 and Gibson et al. 2010 compared *- controversy becomes confirmation -*

HST/NICMOS HD189733b 1.4-2.5 um

- Figures taken directly from both papers
- Single channel photometry compared
 - Blue (Swain)
 - Black (Gibson)
- Instrument model for both shown in green
- Key difference is the SNR of instrument model
- Noisy instrument model = noisy Gibson result (red)
- The Gibson result with larger errors is due to a poorly determined instrument model.
- If you can make the comparison by eye in these kinds of plots, the difference is very big.

The XO-1 extracted spectrum does not agree, because Gibson omitted the decorrelation parameters (ΔX , ΔY , & θ) which trace the small motions of the spectrum across the detector, the main source of systematic errors.

Are the detected molecules expected?

Calculations from Julie Moses

But do we derive similar abundance profiles?

Many methane atmospheres

Composition & Temperature Profiles

Madhusudhan & Seager 2009

Principal Component Analysis

Correlations between the n=8 parameters that match the data

Eigenvalues of covariance matrix, $C_{n,n}$ i.e. $C_{i,j} = cov(p_i,p_j) \& C_{i,j} = var(p_i,p_j)$

Transmission Spectra

System	$(R_{planet}/R_{star})^2$	Atmosphere
HD209458b	0.0132	0.001-0.002
GJ1214b	0.0135	0.003 (H ₂)
Earth	8.4x10 ⁻⁵	10-6

Griffith et al. 2010, In prep.

1st & 2nd transits probe different hemispheres

Thermochemical Equilibrium

Mole Fraction

From Julie Moses

With Photochemistry

From Julie Moses

Greedy H₂O unites observations

Griffith et al. 2010, In prep.

Indications

We find that:

- HD209458b's 0.4 um spectrum constrains the planet's radius, simply because Rayleigh scattering dominates.
- Transmission & emission spectra can be analyzed jointly to constrain the composition and thermal structure because H_2O largely dictates the spectrum, and its abundance is expected to be constant.
- Suggest supersolar abundance of H_2O
- We need more data...

Ground-based Exoplanetary Spectroscopy

Detection of Na from Ground-based Facilities

Redfield *et al.*, 2008; Snellen et al., 2008; Sing et al., 2010

Detection of CO in HD209458b

Supersolar abundance: $[CO] = 1-3x10^{-3}$

Snellen et al., 2010

NASA Infrared Telescope Facility (IRTF)

3.0 m primary mirror
Mauna Kea
optimized for NIR

K-band

SpeX instrument:
Cross dispersion grism
1.9 – 4.2 microns
Medium resolution R ~ 2000

L-band

Spectral Analysis

Use different calibration techniques to extract systematic errors Use different methods to extract the light curve signal Principal Component Analysis
 PCA finds a new horthonormal base, which better represents the dataset

• Y_1 first principal component, Y_2 the second

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Swain et al. Nature 2010

It cannot be atmospheric water...

• Mandel *et a*l. suggested that the spectra are due to telluric water

•Using the **225µm tau readings** obtained at the Caltech Submilimeter Observatory (CSO) on Manua Kea, we find <u>no correlation</u> between the spectra obtained and atmospheric effects

Methane Emission

Cassini VIMS

Status for HD209458b & HD189733b

Pretty Good

Confirmation of spectra on ground-based & space platforms Confirmation of data analysis through different techniques Detection of the most abundant C and O molecules Beginning to constrain temperature & composition profiles Measurements of temperature fields across planets Evidence for hot upper atmospheres, possibly fluorescence Evidence for atmospheric escape.

Little Guys: First GJ436b

Conclusions

• Evidence for atmospheric escape.

• Evidence for CO, CO₂, H₂O & CH₄

• Beginning to constraint T & composition profiles

• Need data at high spectral resolution & wavelength coverage.

Need simultaneously observed Vis to IR

Need information on hot CH4 lines

 Nonetheless, spectra are beginning to address interesting questions!