

Analytical expression for long exposure coronagraphic imaging First applications

Sauvage J.-F., Mugnier L., Villecroze, R., Fusco T., Rousset, G. ONERA

THE FRENCH AEROSPACE LAB

retour sur innovation

Global context high contrast imaging

- Ground direct imaging of exoplanet
 - SPHERE
 - GPI
- Instrument type
 - Direct imaging / SDI / ADI
 - IFS
 - Polarimetric imaging

- Need for dedicated data processing
 - Quasi-static wavefront control
 - A posteriori Deconvolution
- = > Coronagraphic image model accounting for averaged turbulence residuals

Outline

- Global context : High contrast imaging
- Analytical expression of coronagraphic imaging
- First applications
- Conclusion / perspectives

Assumptions

- Coronagraphic scheme :
 - Residual turbulence, time-dependent
 - Static upstream aberrations
 - Perfect coronagraph
 - Static downstream aberrations

Long-exposure expression without small phase assumption ?

ONERA

THE FRENCH ADDRESS LAD

Definition of perfect coronagraph

 Idealized device subtracting a plane wave in pupil plane, in a proportion that minimizes outgoing energy

$$\mathcal{A}_{1}^{+}(\boldsymbol{\alpha},t) = \mathcal{A}_{1}^{-}(\boldsymbol{\alpha},t) - \eta(t)\mathrm{FT}^{-1}(\mathcal{P}_{u}(\boldsymbol{\rho}))$$
$$\eta_{0}(t) = \arg\min_{\eta(t)} \left| \left| \mathcal{A}_{1}^{-}(\boldsymbol{\alpha},t) - \eta(t)\mathrm{FT}^{-1}(\mathcal{P}_{u}(\boldsymbol{\rho})) \right| \right|^{2}$$
$$\eta_{0}(t) = \langle \Psi_{0}(\boldsymbol{\rho},t) | \mathcal{P}_{u}(\boldsymbol{\rho}) \rangle$$

Post-coronagraphic PSF with Tip from -1.6 to 1.6 rad

Sauvage et al JOSAA, Vol. 27 Issue 11, Novembre 2010

 $h_c(\phi_u,\phi_d,D_\phi)$

Sauvage et al JOSA A, Vol. 27 Issue 11, Novembre 2010

$$h_c(\phi_u,\phi_d,D_\phi)$$

- Comparison to empirical sum of short exposures
 - ϕ_u = 35nm, ϕ_d = 100nm
 - Residual AO turbulent wavefront, Strehl Ratio = 90%
 - Four Quadrant Phase Mask coronagraph

Sauvage et al JOSA A, Vol. 27 Issue 11, Novembre 2010

$$h_c(\phi_u,\phi_d,D_\phi)$$

- Comparison to empirical sum of short exposures
 - ϕ_u = 35nm, ϕ_d = 100nm

Sauvage et al JOSA A, Vol. 27 Issue 11, Novembre 2010

$$h_c(\phi_u,\phi_d,D_\phi)$$

- Comparison to empirical sum of short exposures
 - $\phi_u = 35$ m, $\phi_d = 100$ nm

Model validated wrt summation of short exposures

Compatibility with 4QPM

Outline

- Global context : High contrast imaging
- Analytical expression of coronagraphic imaging
- First applications
- Conclusion / perspectives

• Image formation including star environment

$$i_{c} = \alpha h_{c} (\phi_{u}, \phi_{d}, D_{\phi}) + o * h_{nc} (\phi_{u}, \phi_{d}, D_{\phi}) + n$$

• Image formation including star environment

$$i_{c} = \alpha h_{c} (\phi_{u}, \phi_{d}, D_{\phi}) + o * h_{nc} (\phi_{u}, \phi_{d}, D_{\phi}) + n$$

- Assume observation parameters almost known $(\hat{\phi}_{u}, \hat{\phi}_{d}, \hat{D}_{\phi})$
- Companion, contrast 3.10⁴

Image formation including star environment

$$i_{c} = \alpha h_{c} (\phi_{u}, \phi_{d}, D_{\phi}) + o \times h_{nc} (\phi_{u}, \phi_{d}, D_{\phi}) + n$$

- Assume observation parameters almost known $(\hat{\phi}_{u}, \hat{\phi}_{d}, \hat{D}_{\phi})$
- Companion, contrast 3.10⁴

Subtraction of the star image model

 $\hat{\alpha} h_c \left(\hat{\phi}_u, \hat{\phi}_d, \hat{D}_{\phi} \right)$

Image formation including star environment

$$i_{c} = \alpha h_{c} (\phi_{u}, \phi_{d}, D_{\phi}) + o \times h_{nc} (\phi_{u}, \phi_{d}, D_{\phi}) + n$$

- Assume observation parameters almost known $(\hat{\phi}_{u}, \hat{\phi}_{d}, \hat{D}_{\phi})$
- Companion, contrast 3.10⁴

Subtraction of the star image model

 $\hat{\alpha} h_c \left(\hat{\phi}_u, \hat{\phi}_d, \hat{D}_{\phi} \right)$

Classical deconvolution (MISTRAL) $h_{nc}\left(\hat{\phi}_{u}, \hat{\phi}_{d}, \hat{D}_{\phi}\right)$

Classical phase diversity

- Classical phase diversity :
 - 1 focus and 1 diversified image

$$\mathbf{i}_{foc} = \alpha h_{foc}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j\phi})^{2} \right|$$
$$\mathbf{i}_{div} = \alpha h_{div}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j(\phi + \phi_{div})})^{2} \right|$$

Classical phase diversity

- Classical phase diversity :
 - 1 focus and 1 diversified image $(\phi_{div} = a_4 \mathbf{Z}_4)$

$$\mathbf{i}_{foc} = \alpha h_{foc}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j\phi})^{2} \right|$$
$$\mathbf{i}_{div} = \alpha h_{div}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j(\phi+\phi_{div})})^{2} \right|$$

Classical phase diversity

- Classical phase diversity :
 - 1 focus and 1 diversified image $(\phi_{div} = a_4 \mathbf{Z}_4)$

$$\mathbf{i}_{foc} = \alpha h_{foc}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j\phi})^{2} \right|$$
$$\mathbf{i}_{div} = \alpha h_{div}(\phi) = \alpha \left| \mathrm{FT}(Pe^{j(\phi + \phi_{div})})^{2} \right|$$

• MAP criterion minimisation leads to phase ϕ estimation

$$\mathbf{J}(\boldsymbol{\phi}) = \left\| \mathbf{i}_{f \, oc} - \alpha h_{f \, oc}(\boldsymbol{\phi}) \right\|^2 + \left\| \mathbf{i}_{d i v} - \alpha h_{d i v}(\boldsymbol{\phi}) \right\|^2$$

Coronagraphic phase diversity

- Coronagraphic phase diversity :
 - Point like source
 - Static aberrations upstream and downstream of coronagraphic mask
 - 1 focus and 1 diversified image

$$\mathbf{i}_{foc}^{c} = \alpha h_{foc}^{c} (\phi_{u}, \phi_{d}, D_{\phi})$$
$$\mathbf{i}_{div}^{c} = \alpha h_{foc}^{c} (\phi_{u} + \phi_{div}, \phi_{d}, D_{\phi})$$

Coronagraphic phase diversity

- Coronagraphic phase diversity :
 - Point like source
 - Static aberrations upstream and downstream of coronagraphic mask
 - 1 focus and 1 diversified image $(\phi_{div} = ?)$

$$\mathbf{i}_{foc}^{c} = \alpha h_{foc}^{c} (\phi_{u}, \phi_{d}, D_{\phi})$$
$$\mathbf{i}_{div}^{c} = \alpha h_{foc}^{c} (\phi_{u} + \phi_{div}, \phi_{d}, D_{\phi})$$

Coronagraphic phase diversity

- Coronagraphic phase diversity :
 - Point like source
 - Static aberrations upstream and downstream of coronagraphic mask
 - 1 focus and 1 diversified image $(\phi_{div} = ?)$

$$\mathbf{i}_{foc}^{c} = \alpha h_{foc}^{c} (\phi_{u}, \phi_{d}, D_{\phi})$$
$$\mathbf{i}_{div}^{c} = \alpha h_{foc}^{c} (\phi_{u} + \phi_{div}, \phi_{d}, D_{\phi})$$

• MAP criterion minimisation leads to phase ϕ estimation

$$\mathbf{J}(\boldsymbol{\phi}_{u},\boldsymbol{\phi}_{d},\boldsymbol{\alpha}) = \left\| \mathbf{i}_{foc}^{c} - \boldsymbol{\alpha} h_{foc}^{c} (\boldsymbol{\phi}_{u},\boldsymbol{\phi}_{d}, D_{\phi}) \right\|^{2} + \left\| \mathbf{i}_{div}^{c} - \boldsymbol{\alpha} h_{foc}^{c} (\boldsymbol{\phi}_{u} + \boldsymbol{\phi}_{div}, \boldsymbol{\phi}_{d}, D_{\phi}) \right\|^{2}$$

Choice of phase diversity

Criterion map for an estimated phase $\phi = a_4 \mathbf{Z}_4 + a_5 \mathbf{Z}_5$

Choice of phase diversity

Criterion map for an estimated phase $\phi = a_4 \mathbf{Z}_4 + a_5 \mathbf{Z}_5$

ONERA

THE PRENCH ASHORAGE LA

22

Choice of phase diversity

Criterion map for an estimated phase $\phi = a_4 \mathbf{Z}_4 + a_5 \mathbf{Z}_5$

Selection of cross-diversity $\phi_{div} = 0.8 \mathbf{Z}_4 + 0.8 \mathbf{Z}_5$

ONERA

Simulation results on static aberrations

- Estimation of 20+20 Zernike modes, including Tip-Tilt
- Static aberrations representative of SPHERE constraints
- Joint estimation of upstream and downstream aberrations
- Nanometric accuracy

Downstream aberrations can be jointly estimated with upstream abs.

Characterisation of the coronagraphic WFS

Direction - Conférence

Conclusion / perspectives

- Developpement of analytical expression for coronagraphic imaging
 - => validation by simulations
 - Comparison to simple Four Quadrant Phase Mask
- First applications :
 - Simple deconvolution, almost known parameters
 - SPHERE IFS post-processing => see Poster by Marie Ygouf
 - Linearized model applied to myopic coronagraphic deconvolution
 - Coronagraphic Focal plane WFS
 - Exact model applied to static aberrations estimation
 - Simulation performance with real coronagraph
 - Pseudo-Closed-Loop aberrations pre-compensation
 - Experimental validations on AO bench
 - Deal with broadband wavefront sensing => Poster by S. Dandy

