Experimental Progress and Limitations of Optimal Wavefront Correction in Polychromatic Light

Tyler Groff, Alexis Carlotti, N. Jeremy Kasdin Mechanical and Aerospace Engineering

Princeton University

Spirit of Lyot Conference

October 29, 2010

Princeton High Contrast Imaging Lab

Shaped Pupil Coronagraph

Kasdin et. al 2003 Kasdin et. al 2005 Belikov et. al 2007

3

Introduction (Results)

- Monochromatic Results
 - 2.34 x 10⁻⁷ Contrast in Symmetric Dark Holes

- Broadband Suppression with Monochromatic Estimation
 - 5.36 x 10⁻⁶ Contrast in Symmetric Dark Holes in 10% Band

Correction Algorithm: Stroke Minimization

Dark Zone Intensity:

$$I_{DZ} = \left(\frac{2\pi}{\lambda}\right)^2 XMX^T + \frac{4\pi}{\lambda}X\Im\{b^T\} + d$$

Optimization problem:

 $\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} \\ \text{subject to} & \vdots \end{array}$

$$\sum_{k=1}^{N} a_k^2 = XX^T$$
$$I_{DZ} \le 10^{-C}$$

Cost Function:

$$J = X\left(\mathcal{I} + \mu\left(\frac{2\pi}{\lambda}\right)^2 M\right) X^T + \mu \frac{4\pi}{\lambda} X\Im(b^T) + \mu(d - 10^{-C})$$

Optimal DM command:

$$X_{opt} = -\mu\Im(b)\left(\frac{\lambda}{2\pi}\mathcal{I} + \mu\frac{2\pi}{\lambda}M\right)^{-1}$$

 $X = [a_1, a_2, ..., a_n]$ $M = \langle \mathcal{F}\{Af\}, \mathcal{F}\{Af\} \rangle$ $b = \langle \mathcal{F}\{A(1+g)\}, \mathcal{F}\{Af\} \rangle$ $d = \langle \mathcal{F}\{Ag\}, \mathcal{F}\{Ag\} \rangle$ Basis function coefficientsDark Zone influence of basis functionsDark Zone effect of basis functions with aberrationsDark Zone effect of aberrations

Monochromatic Performance

• Initial Contrast = 1.23×10^{-4}

- Final Average Contrast = 2.34×10^{-7}
 - Left Dark Hole = 2.41×10^{-7}
 - Right Dark Hole = 2.28×10^{-7}

Best monochromatic correction to-date on both sides of the image plane

- Improvements in DM model
- Improved stability in the experiment

Current Limitations

- DM model error
- Laser power stability
- Camera noise
- Air Experiment Computation Time

Broadband Correction

- Correct polychromatically with single wavelength estimate
- Optimal solution for multiple wavelengths
- Estimation is the most costly component of an iteration
 - Pairwise Estimation requires at least 6 exposures
 - Simultaneous estimation means non-common Path
 - Common path means temporal ambiguity

Requires an expression for wavefront error as a function of wavelength

Scaling a Single Estimate with Wavelength

Pupil Electric Field:

- Amplitude errors are wavelength independent

$$g(u, v, \lambda) = \alpha(u, v) e^{i \frac{\lambda_0}{\lambda} \beta_0}$$

• Phase errors scale linearly in wavelength

Limitations: 1) Bounds of estimation area limit accuracy of shift 2) Assume wavelength independence of amplitude errors

Windowed Stroke Minimization

Wavelength Dependent Dark Zone Intensity:

$$I_{DZ}(\lambda) = w(\lambda) \left(\frac{2\pi}{\lambda}\right)^2 X M_{\lambda} X^T + w(\lambda) \frac{4\pi}{\lambda} \Im\{b_{\lambda}\} X^T + w(\lambda) d_{\lambda}$$

Optimization problem:

minimize

subject to:

where

$$\sum_{k=1}^{N} a_k^2 = X X^T$$
$$I_{DZ}(\lambda_0) \le 10^{-C_{\lambda_0}},$$
$$I_{DZ}(\lambda_1) \le 10^{-C_{\lambda_1}},$$
$$I_{DZ}(\lambda_2) \le 10^{-C_{\lambda_2}}$$
$$\lambda_1 = \gamma_1 \lambda_0$$
$$\lambda_2 = \gamma_2 \lambda_0$$

 λ_0 is the Estimated Wavelength

 $M_{\lambda} = \langle C_{\lambda}\{A_{o}f\}, C_{\lambda}\{A_{o}f\} \rangle$ $b_{\lambda} = \langle C_{\lambda}\{A_{o}(1+g_{\lambda})\}, C_{\lambda}\{A_{o}f\} \rangle$ $d_{\lambda} = \langle C_{\lambda}\{A_{o}g_{\lambda}\}, C_{\lambda}\{A_{o}g_{\lambda}\} \rangle$ $w(\lambda) = \text{Intensity Normalization Function}$

These are the same matrices, but the aberrations and transfer function, C, are wavelength dependent

- Take an initial data set with each filter
- Estimate and Correct at the central wavelength (632nm)
 - Calculating bounding wavelength estimates (10-20%)
 - Windowed Stroke Minimization algorithm
- After the dark hole is generated, take another filter set

Experimental Results

- 10% mean contrast = 5.67 x 10⁻⁶
- No Filter (~400-900 nm detector response)

• Full Band Contrast = 1.84 x 10⁻⁵

Approximately 10-17 Volts actuation P-V (~30 nm)

Dark Hole Degradation with Wavelength

Final Image $\lambda = 579$ nm Final Image $\lambda = 601$ nm Final Image $\lambda_0 = 632 \text{ nm}$ -4 -4 -4 -10 -10 -10 -4.5 -4.5 -4.5 -5 -5 -5 λ_0/D λ_0/D λ_0/D 0 0 0 -5 -5 -5 5 5 5 -5.5 -5.5 -5.5 10 10 10 -6 -6 -6 -5 -10 10 -10 5 10 -10 -5 5 10 -5 5 0 0 0 λ_0/D λ_0/D λ_0/D Final Image $\lambda=652~\mathrm{nm}$ Final Image $\lambda = 662$ nm Final Image $\lambda = 642$ nm -4 -4 -4 -10 -10 -10 -4.5 -4.5 -4.5 -5 -5 -5 λ_0/D λ_0/D λ_0/D 0 0 0 -5 -5 -5 5 5 5 -5.5 -5.5 -5.5 10 10 10 -6 -6-6 $0 \ \lambda_0/D$ -5 -5 -10 -5 5 10 -10 0 5 10 -10 5 10 0 λ_0/D λ_0/D

Varying Delta to Measure Contrast Performance

13

Conclusions

Current Performance

- Optimal Broadband Suppression in symmetric dark holes
- Estimating at a single wavelength
- <u>5.67 x 10⁻⁶</u> Average contrast in symmetric dark holes 10% band with ~30 nm P-V actuation
- <u>1.84 x 10⁻⁵</u> Average contrast in symmetric dark holes 22% band

Limitations:

- Narrow, assymetric band of single mode fiber output
- Finite extent of the electric field estimate
- Assumption of wavelength independent amplitude aberrations
- Input of the shifted estimates amplifies the original estimate error in the control algorithm

NASA APRA Grant #NNX09AB96G, NASA Earth and Space Science Graduate Fellowship

Future Work

Experimental:

- Minimize errors from wavelength shifting
 - Increase Estimation area beyond control area
 - Establish a characteristic wavelength relationship for amplitude errors (design specific, e.g. 2 DMs in series)
- Improve DM model
- Broadband photonic crystal single-mode fiber

Theoretical:

- Establish a tradeoff between bandwidth and dark hole size, single vs. two sided dark holes, and lowest achievable contrast
- Proof of estimation error propagation