Achromatic multi-four quadrant phase mask : laboratory demonstration

Raphaël Galicher Pierre Baudoz, Jacques Baudrand

Lyot conference

October 2010

Monochromatic four quadrant phase mask

Monochromatic four quadrant phase mask

FQPM achromatization

•Halfwave plates

Mawet et al. 2006 Boccaletti et al. 2008

• Sub-lambda grattings Mawet et al. 2005, 2006

• Mach-Zender interferometer

Carlotti et al. 2008

• Multi-stage four quadrant phase mask \rightarrow MFQPM Baudoz et al. 2008

October, 28th 2010

Multi-stage FQPM principle

MFQPM prototype

630nm to 870nm ($\Delta\lambda$ =240nm, 32% bandwidth) Aperture : F/D = 40

 $\lambda_3 = 800 \text{nm}$ $\lambda_2 = 690 \text{nm}$ $\lambda_1 = 740 \text{nm}$

Full pupil R=3 : images

- 630 to 870nm $\rightarrow \Delta \lambda = 32\%$
- Aperture F/D=40
- Throughput = 72%

Total energy rejection ~ 2000 → limited by speckles (no calibration)

Different scales

Full pupil R=3 : images

- 630 to 870nm $\rightarrow \Delta \lambda = 32\%$
- Aperture F/D=40
- Throughput = 72%

No coronagraph $f = \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{$

Total energy rejection ~ 2000 → limited by speckles (no calibration)

October, 28th 2010

October, 28th 2010

Full pupil R=4.8

- Throughput = 56%
- Aperture : F/D=250-300
- Differential imaging (factor 10 on raw contrast)

Contrast 1.5 10^8 at 4.5 λ_0 /D SNR=4.5

Obstructed pupil R=3

- 630 to 870nm $\rightarrow \Delta\lambda$ =32%
- Aperture : F/D=40
- E-ELT pupil
- Throughput = 86%

Obstructed pupil R=3 : pupil images

No coronagraph

1st Lyot stop

2nd Lyot stop

3rd Lyot stop

Obstructed pupil R=3 : images 630 to 870nm $\rightarrow \Delta \lambda = 32\%$ Throughput = 86% No speckle calibration τ = total rejection Lab images No coronagraph 1 FQPM 2 FQPM 3 FQPM $\tau = 261$ $\tau = 47$ **Numerical images** 2 FQPM 3 FQPM No coronagraph 1 FQPM = 299 $\tau = 35$

Phase errors 10 nm rms

October, 28th 2010

Obstructed pupil R=3 : images

Obstructed pupil R=3 : spectra MFQPM E-ELT T=86% Δλ=32% On-axis Off-axis $4\lambda_0/D$ 0.0010 $\Delta\lambda = 32\%$ www.ww intensity Mun mun Normalized Fiber diameter ~ 1 λ_0 /D 0.0001 No speckle calibration 650 700 750 800 Wavelength in nm

Obstructed pupil R=3 : lab planet

630 to 870nm $\rightarrow \Delta \lambda$ =32% E-ELT pupil Throughput = 86%

Lab planet : 1.5 10^{-4} at 3.47 λ_0/D

Detected with SNR=2

No speckle calibration

Obstructed pupil R=3 : lab planet

630 to 870nm $\rightarrow \Delta \lambda$ =32% E-ELT pupil Throughput = 86%

Lab planet : 1.5 10^{-4} at 3.47 λ_0/D

Obstructed pupil R=3 : lab planet

630 to 870nm $\rightarrow \Delta \lambda$ =32% E-ELT pupil Throughput = 86%

Lab planet : 1.5 10^{-4} at 3.47 λ_0/D

Conclusions

- MFQPM very easy to build (works at every λ) already specified for space (JWST)
- Full pupil, F/40, 32% bandwidth, T=72% 2000 total energy rejection Full pupil, F/250, 20% bandwidth, T=56% 10⁸ contrast at 4.5 λ_0 /D
- Obstructed pupil (E-ELT), F/40, 32% bandwidth, T=86%
 650 total energy rejection
 1.5 10⁻⁴ lab planet at 3.5 λ₀/D detection

Ongoing works :

- **New prototype** with less optic aberrations \rightarrow flatten spectra
- Association with a speckle calibrator/killer (Self-coherent camera)

See Marion Mas talk tomorrow

Thanks

Self-coherent camera + four quadrant phase mask coronagraph

Integral Field Spectrometer + Self-coherent camera

Aberrations = function of λ (Fresnel propagation)

Spectral deconvolution strongly limited

One solution : SCC-IFS

Wavelength

MFQPM prototype

