Photometric characterization of exoplanets using ADI and SDI in SPHERE/IRDIS

Arthur Vigan Laboratoire d'Astrophysique de Marseille

and Claire Moutou, Maud Langlois, France Allard, Anthony Boccaletti, Marcel Carbillet, David Mouillet, Isabelle Smith

In the Spirit of Lyot 2010 - Paris - 28/10/2010

The VLT/SPHERE instrument

Main goals:

- 5σ contrast \geq 12.5 mag
- Angular separation ≥ 0.10 "
- Masses down to $\sim I M_{Jup}$ at short separation

Main characteristics:

- Differential imager: YJHK bands
- Long slit spectrograph:
 - R = 60 and R = 420
- Polarimeter
- Imager
- 11" FoV with 12.25 mas/pix

SPHERE consortium:

LAOG, MPIA, LAM, LESIA, Laboratoire Fizeau, INAF, Observatoire de Genève, ETH, NOVA, ONERA, ASTRON

Data simulation for DBI mode

Realistic simulations with IDL+package SPHERE (Carbillet et al. 2008):

- atmosphere + AO + coronagraph + aberrations
- temporal variations (seeing, wind, optics rotation, ...)
- Y2Y3 / J2J3 / H2H3 / KIK2 filter pairs
- 4 h observing sequence for a star at $\delta = 45^{\circ}$

3 series of planets
5 angular separations
stars from F0 to M2
planet T_{eff} from 500K to 2500K
contrast from 5 to 16.5 mag

Detection limits

- Attenuation of
 - 4 to 5 mag with ADI or SDI
 - 6 to 7 mag with SDI+ADI
- LOCI really improves at small separation

- Similar results at other wavelengths
- Limiting sky and instrument background (K band)

Photometric accuracy

- How precisely can the planet flux be retrieved?
- Estimation of the photometric precision:
 - for all planets detected at 5σ
 - using aperture photometry (diameter = 2.44 λ /D)

- SDI+ADI brings a significant improvement
- Variation with angular separation
- Factor 2 to 12

Dependance on wavelength

Vigan et al. 2010

- 0.2 mag precision → ~30 K precision on T_{eff}
- Performance depends on:
 - wavelength (chromaticity of the PSF)
 - AO correction region (inside/outside)

7

Simulation of characterization performances

Best filter pairs sequence

→ Priorities on filter pairs for characterization:

I. H2H3 (NIR-Survey) 2. Y2Y3 / J2J3 3. H3H4 / KIK2

Vigan et al. 2010

 Significant gain with 2 or 3 filter pairs

- H3H4 / KIK2 useful for warmer objects
- No «cross-talk» between the different star magnitudes

Lowest estimations of T_{eff}

Vigan et al. 2010

H2H3

H2H3+Y2Y3

H2H3+Y2Y3+J2J3

Estimation of T_{eff}:

- high flux → 700K @ 0.2" / ~2 M_{Jup} @ 10 Myr
- low flux → 500K @ 0.2" / ~I M_{Jup} @ 10 Myr

Error distribution for T_{eff} and log g

How precisely can we determine T_{eff} and log g?

• Strong dependence with star magnitude for T_{eff}

11

Small dependence for log g

→ log g much more difficult to constrain!!

Impact of T_{eff} and log g errors

• Concrete example:

- M0 and F0 stars at 10 pc
- 2 M_{Jup} planet @ 5 AU
- age 40±30 Myr
- age based on preliminary SPHERE target list

Ideal	М0 @ 10 рс	F0 @ 10 pc
$1.9^{+1.3}_{-0.7} \mathrm{M_{Jup}}$	$1.9^{+1.2}_{-1.0} \mathrm{M}_{\mathrm{Jup}}$	$1.1^{+2.6}_{-0.5} \mathrm{M}_{\mathrm{Jup}}$

Conclusions

- IRDIS in DBI mode will allow to reach Jupiter mass regime at very small separation
- Speckles strongly limit the photometric accuracy on the planet flux
- Combining different filters helps to constrain a model on the data → definition of a best filter pair sequence
- Characterization of planets down to I M_{Jup}
- log g is difficult to constrain and leads to large errors on the planet mass

13