

Gemini Planet Imager

Bruce Macintosh (Principal Investigator)

Dave Palmer (Project Manager) & James R. Graham* (Project Scientist)

 <u>AMNH:</u> Ben Oppenheimer, Anand Sivaramakrishnan, Remi Soummer*
 <u>HIA:</u> Les Saddlemyer, Jean-Pierre Veran, Darren Erikson, Jennifer Dunn, Christian Marois*, Joeleff Fitzsimmons, Alexis Hill, Vlad Reshetov, John Pazder, Murray Fletcher
 <u>JPL:</u> Kent Wallace*, John Angione, Randall Bartos, Laurent Pueyo*, Chris Shelton
 LLNL: Lisa Poyneer, Brian Bauman, Julia Evans, Steve Jones

- <u>UCLA:</u> James Larkin, Jason Weiss, Evan Kress, Marshall Perrin*, Quinn Konopacky, Jeffrey Chilcote*, John Canfield
- LAO/UCSC: Don Gavel, Katie Morzinski, Daren Dillion, Sandrine Thomas*, Rachel Rampy, Andrew Norton
- <u>U. Montréal</u>: **René Doyon***, Jerome Marie, Simon Thibault (Immervision) <u>Boston Micromachines</u>: Steven Cornelissen
- <u>Science:</u> Inseok Song, Travis Barman*, Michael Fitzgerald*, Sasha Hinkley*, Jennifer Patience*, Franck Marchis, Paul Kalas*, Emily Rice*, Gautam Vasisht*, Sloan Wiktorowicz*

Science Motivation

Solar System Imaging

- Fast alternative do Doppler
 - Improved statistics
 - 4–40 AU vs. 0.4–4 AU
- Search for exoplanets > 4 AU
 - Uniqueness of solar system?
 - Sample beyond the snow line & explore outer disks
 - Protostar disk radii are 50-80 AU
 - Do planets form by gravitational instability (30–100 AU)?
 - Vestiges of planetary migration
- Relation to debris disks
- Resolve *M* sin *i* ambiguity

Detect Reflected Starlight?

- Predicted median contrast & angular separation for cataloged Doppler planets is 2×10^{-8} at 30 mas
 - 3λ/D = 130 mas
 @ 1.6 μm on a
 8-m telescope

From the ground—target selfluminous planets between 4–40 AU

Young Planets are Luminous

Spectra: Stars, Brown Dwarfs, & Planets

Exoplanet Atmospheres

- Exoplanets will occupy a unique location in (log g, T_{eff}) phase space
 - Over 4.5 Gyr a Jovian mass exoplanet traverses the locus of $H_2O \& NH_3$ cloud condensation
- Last frontier of classical stellar atmospheres

Thermal Evolution Reveals History

- Luminosity including the effects of core accretion
 - Planet is formed by 2 Myr
 - The gas accretion luminosity spike lasts about 0.04 Myr
 - The spike may be broader & dimmer due to slow accretion across the gap formed by the proto-planet
- The dashed line is a "hot start" cooling track

Diffraction

Coronagraph Land

Nullers

Pupil apodization

Wavefront errors

- A wavefront error, spatial frequency k, diffracts light according to the condition for constructive interference $\theta = k\lambda/2\pi$
 - Dynamic errors
 - Atmosphere
 - (Quasi) Static errors
 - Telescope
 - Instrument

Wavefront Errors & Contrast

17

Recipe for High Contrast Imaging

- Precise & accurate wavefront control
 - Advanced AO to control of dynamic (atmosphere) external static (telescope) aberrations
 - Few nm rms to reach contrast of 10⁻⁸
 - Need a few x 10³ degrees of freedom & kHz bandwidth to keep up with atmosphere
 - Amplitude errors must be small or controlled
- Control of diffraction to target contrast level
 - Pupil apodization to reduce side-lobes at angles of a few λ/D
- Stable to enable differential imaging
 - Field rotation: Cassegrain focus on Alt/Az telescope
 - Spectral/polarization differencing: IFS/IFP

Gemini Planet Imager

- 1800-actuator MEMS AO
- Integral field spectrograph/ polarimeter
- Advanced coronagraph
- Nanometer-level wavefront accuracy through calibration and interferometric wavefront sensor

OMSS & FSS at HIA

BMC MEMS

MEMS Surface Tests

Steve Cornelissen BMC

MEMS on LLNL Testbed

Wavefront Sensor

• LL CCID-66

- 160 x 160 frame transfer CCD
- 20 port
- High QE
- Low read noise
 - 3 e⁻ rms @ 1 kHz
 - 4-6 e⁻ rms @ 4 kHz
- Non-linearity?

LLNL First Light Closed Loop

- Spinning phase plate simulates median Cerro Pachon $r_0 \& \tau_0$
- 1.5 kHz
 - Computational goal
 - Movie x8 real time
- Woofer/tweeter/TT control
 - Fourier mode gain optimizer
 - 50 nm rms errors
- PSF recorded by basic science camera (no coronagraph)

BMC MEMS device #080W001

- Stroke 4 µm
- Scalloping < 10 nm
- Curvature 1-2 µm
- Five candidate science devices
- 99.1% yield
 - 34 anomalous actuators

Weak actuator (1)
 Dead actuator (7)
 Coupled actuator (26)

APLC Optimized for Obscured Pupil

- Mask bad actuators on the conjugate pupil plane
- Isaacs et al 2010 OE (submitted) for Fourier algebra & analysis

Lyot Mask & Wavefront Error

Masked Actuator PSF Comparison (no WFE)

AMNH Masks

Apodizer profile

JPL CAL Unit Interferometer Measures Science Wavefront

JPL CAL Unit Status

 LOWFS sensor performs at 1 mas & < 5 nm RMS absolute accuracy

Zygo measurement

CAL measurement

JPL CAL Unit Status

JPL CAL Unit Status

- HOWFS performs at ~ 4 nm RMS absolute accuracy
- Likely that repeatability and precision are higher than this
 - Focal-plane wavefront sensing algorithms for daytime calibration to set wavefront setpoints

UCLA Integral Field Spectrograph

UCLA IFS Assembly

Individual optics < 1 nm RMS

Optical Bench Alignment @ HIA

13 nm RMS WFE End-to-End

LAO/UCSC Integration & Test

- Integration & test at LAO/UCSC High Bay clean room (D. Gavel, S. Thomas)
- Subsystem integration
- End-to-end contrast tests with telescope simulator & phase plates
- Performance
 optimization
- Flexure & environment tests
- Formal acceptance tests

Performance Models @ http://planetimager.org

Road to Gemini...early 2012

